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Abstract

We describe quaero, a method that i) enables the automatic optimization of searches for physics
beyond the standard model, and ii) provides a mechanism for making high energy collider data gen-
erally available. We apply quaero to searches for standard model WW , ZZ, and t�t production, and
to searches for these objects produced through a new heavy resonance. Through this interface, we
make three data sets collected by the D� experiment at

p
s = 1:8 TeV publicly available.
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It is generally recognized that the standard model, a
successful description of the fundamental particles and
their interactions, must be incomplete. Models that ex-
tend the standard model often predict rich phenomenol-
ogy at the scale of a few hundred GeV, an energy regime
accessible to the Fermilab Tevatron. Due in part to the
complexity of the apparatus required to test models at
such large energies, experimental responses to these ideas
have not kept pace. Any technique that reduces the time
required to test a particular candidate theory would al-
low more such theories to be tested, reducing the possi-
bility that the data contain overlooked evidence for new
physics.
Once data are collected and the backgrounds have been

understood, the testing of any speci�c model in principle
follows a well-de�ned procedure. In practice, this process
has been far from automatic. Even when the basic selec-
tion criteria and background estimates are taken from
a previous analysis, the reinterpretation of the data in
the context of a new model often requires a substantial
length of time.
Ideally, the data should be \published" in such a way

that others in the community can easily use those data to
test a variety of models. The publishing of experimental
distributions in journals allows this to occur at some lev-
el, but an e�ective publishing of a multidimensional data
set has, to our knowledge, not yet been accomplished by
a large particle physics experiment. The problem ap-
pears to be that such data are context-speci�c, requiring
detailed knowledge of the complexities of the apparatus.
This knowledge must somehow be incorporated either in-
to the data or into whatever tool the non-expert would
use to analyze those data.
Many data samples and backgrounds have been de�ned

in the context of sleuth [1], a quasi-model-independent
search strategy for new high pT physics that has been ap-
plied to a number of exclusive �nal states [2,3] in the data
collected by the D� detector [4] during 1992{1996 in Run
I of the Fermilab Tevatron. In this Letter we describe a
tool (quaero) that automatically optimizes an analysis
for a particular signature, using these samples and stan-
dard model backgrounds. sleuth and quaero are com-
plementary approaches to searches for new phenomena,
enabling analyses that are both general (sleuth) and fo-
cused (quaero). We demonstrate the use of quaero in
eleven separate searches: standard model WW and ZZ
production; standard model t�t production with leptonic
and semileptonic decays; resonantWW , ZZ,WZ, and t�t
production; associated Higgs boson production; and pair
production of �rst generation scalar leptoquarks. The
data described here are accessible through quaero on
the World Wide Web [5], for general use by the particle
physics community.
The signals predicted by most theories of physics be-

yond the standard model involve an increased number of
predicted events in some region of an appropriate vari-
able space. In this case the optimization of the analysis
can be understood as the selection of the region in this

variable space that minimizes �95%, the expected 95%
con�dence level (CL) upper limit on the cross section of
the signal in question, assuming the data contain no sig-
nal. The optimization algorithm consists of a few simple
steps:

(i) Kernel density estimation [6] is used to estimate
the probability distributions p(~xjs) and p(~xjb) for
the signal and background samples in a low-
dimensional variable space V , where ~x 2 V . The
signal sample is contained in a Monte Carlo �le pro-
vided as input to quaero. The background sample
is constructed from all known standard model and
instrumental sources.

(ii) A discriminant function D(~x) is de�ned by [7]

D(~x) =
p(~xjs)

p(~xjs) + p(~xjb)
: (1)

The semi-positive-de�niteness of p(~xjs) and p(~xjb)
restricts D(~x) to the interval [0; 1] for all ~x.

(iii) The sensitivity S of a particular threshold Dcut on
the discriminant function is de�ned as the recipro-

cal of �95%. Dcut is chosen to maximize S.
(iv) The region of variable space having D(~x) > Dcut is

used to determine the actual 95% CL cross section
upper limit �95% [8].

When provided with a signal model and a choice of vari-
ables V , quaero uses this algorithm and D� Run I data
to compute an upper limit on the cross section of the sig-
nal. Instructions for use are available from the quaero
web site.
Table I shows the data available within quaero, and

Table II summarizes the backgrounds. These data and
their backgrounds are described in more detail in Ref. [3].
The �nal states are inclusive, with many events contain-
ing one or more additional jets. Kolmogorov-Smirnov
tests have been used to demonstrate agreement between
data and the expected backgrounds in many distribu-
tions. The fraction of events with true �nal state objects
satisfying the cuts shown that satisfy these cuts after
reconstruction is given as an \identi�cation" e�ciency
(�ID). Because electrons are more accurately measured
and more e�ciently identi�ed than muons in the D�
detector, the corresponding muon channels � =ET 2j and
�� 2j have been excluded from these data.
To check standard model results, we remove WW and

ZZ production from the background estimate and search
(i) for standard model WW production in the space de-
�ned by the transverse momentum of the electron (peT )
and missing transverse energy ( =ET ) in the �nal state
e� =ET , and (ii) for standard model ZZ production in the
space de�ned by the invariant mass of the two electrons
(mee) and two jets (mjj) in the �nal state ee 2j. Re-
moving t�t production from the background estimate, we
search for this process (iii) in the �nal state e =ET 4j using

the two variables laboratory aplanarity (A) and
P

pjT ,
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Final State Selection criteria �ID Ldt
e� pe;�T > 15 GeV

j��detj< 1:7
0.30 108 � 5 pb�1

e =ET 2j p
e;j1;2
T > 20 GeV
=ET > 30 GeV

p
e =ET

T > 40 GeV

0.61 115 � 6 pb�1

ee 2j p
e1;2;j1;2
T > 20 GeV 0.70 123 � 7 pb�1

TABLE I. A summary of the data available within
quaero, including the selection cuts applied and the e�cien-
cy of identi�cation requirements. The �nal states are inclu-
sive, with many events containing one or more additional jets.
Reconstructed jets satisfy pjT > 15 GeV and j�jdetj< 2:5, and
reconstructed electrons satisfy peT > 15 GeV and (j�edetj< 1:1
or 1:5 <j�edet j< 2:5), where �det is the pseudorapidity mea-
sured from the center of the detector.

Standard model backgrounds
Final State multijets W Z V V t�t

e� data data isajet pythia herwig

e =ET 2j data vecbos { pythia herwig

ee 2j data { pythia pythia {

TABLE II. Standard model backgrounds (often produced
with accompanying jets) to the �nal states considered. V V
denotes WW , WZ, and ZZ; \data" indicates backgrounds
from jets misidenti�ed as electrons estimated using data.
Monte Carlo programs (isajet [9], pythia [10], herwig [11],
and vecbos [12]) are used to estimate several sources of back-
ground.

and (iv) in the �nal state e� =ET 2j, using the two variables

peT and
P

pjT , assuming a top quark mass of 175 GeV.
Including all standard model processes in the back-

ground estimate, we look for evidence of new heavy res-
onances. We search (v) for resonant WW production
in the �nal state e =ET 2j, using the single variable me�jj

after constraining me� and mjj to MW , and (vi) for res-
onant ZZ production in the �nal state ee 2j, using the
variable meejj after constraining mjj to MZ . In both
cases we remove events that cannot be so constrained.
To obtain a speci�c signal prediction, we assume that
the resonance behaves like a standard model Higgs bo-
son in its couplings to theW and Z bosons. Constraining
me� to MW and mjj to MZ , we use the quality of the
�t and me�jj to search (vii) for a massive W 0 boson in
the extended gauge model of Ref. [13]. Using me� 4j after
constraining me� to MW , we search (viii) for a massive
narrow Z 0 resonance with Z-like couplings decaying to
t�t!W+bW��b! e� 4j.
Non-resonant new phenomena are also considered. The

variables mjj and either mT
e� or mee are used to search

for a light Higgs boson produced (ix) in association with
aW boson, and (x) in association with a Z boson. Final-
ly, we search (xi) for �rst generation scalar leptoquarks
with mass 225 GeV in the �nal state ee 2j using mee

and ST , the summed scalar transverse momentum of all

electrons and jets in the event. The numerical results of
these searches are listed in Table III. Figures 1 and 2
present plots of the signal density, background density,
and selected region in the variables considered.

Process �sig b̂ Ndata �95% � B
WW ! e� =ET 0.14 19:0� 4:0 23 1.1 pb
ZZ ! ee 2j 0.12 19:7� 4:1 19 0.8 pb
t�t! e =ET 4j 0.13 3:1� 0:9 8 0.8 pb
t�t! e� =ET 2j 0.14 0:6� 0:2 2 0.4 pb

h175 !WW ! e =ET 2j 0.02 29:6� 6:5 32 11.0 pb
h200 !WW ! e =ET 2j 0.07 66:0� 13:8 69 4.4 pb
h225 !WW ! e =ET 2j 0.06 43:1� 9:2 44 3.6 pb
h200 ! ZZ ! ee 2j 0.15 17:9� 3:7 15 0.6 pb
h225 ! ZZ ! ee 2j 0.15 18:8� 3:8 12 0.4 pb
h250 ! ZZ ! ee 2j 0.17 18:1� 3:7 18 0.6 pb

W 0

200 !WZ ! e =ET 2j 0.05 27:7� 6:3 29 3.4 pb
W 0

350 !WZ ! e =ET 2j 0.23 22:7� 5:2 27 0.7 pb
W 0

500 !WZ ! e =ET 2j 0.26 2:1� 0:8 2 0.2 pb
Z0

350 ! t�t! e =ET 4j 0.11 18:7� 4:0 20 1.1 pb
Z0

450 ! t�t! e =ET 4j 0.14 18:7� 4:0 20 0.9 pb
Z0

550 ! t�t! e =ET 4j 0.14 3:8� 1:0 2 0.3 pb

Wh115 ! e =ET 2j 0.08 37:3� 8:2 32 2.0 pb
Zh115 ! ee 2j 0.20 19:5� 4:1 25 0.8 pb

LQ225LQ225 ! ee 2j 0.33 0:3� 0:1 0 0.07 pb

TABLE III. Limits on cross section � branching fraction
for the processes discussed in the text. All �nal states are
inclusive in the number of additional jets. The fraction of the
signal sample satisfying quaero's selection criteria is denoted
�sig; b̂ is the number of expected background events satisfying
these criteria; and Ndata is the number of events in the data
satisfying these criteria. The subscripts on h, W 0, Z0, and
LQ denote assumed masses, in units of GeV.

We note slight indications of excess in the searches for
t�t ! e =ET 4j and t�t ! e� =ET 2j (corresponding to cross
section � branching fractions of � � B = 0:39+0:21

�0:19 pb

and 0:14+0:15
�0:08 pb) that are consistent with our measured

t�t production cross section of 5:5�1:8 pb [14] and known
W boson branching fractions. Observing no compelling
excess in any of these processes, limits on � � B are de-
termined at the 95% CL. As expected, we �nd these data
insensitive to standard model ZZ production (with pre-
dicted � � B � 0:05 pb), and to associated Higgs boson
production (with predicted ��B <

� 0:01 pb). As a check
of the method, quaero almost exactly duplicates a pre-
vious search for LQLQ! ee 2j [15].
quaero is a method both for automatically optimiz-

ing searches for new physics and for allowing D� to make
a subset of its data available for general use. In this
Letter we have outlined the algorithm used in quaero,
and we have described the �nal states currently available
for analysis using this method. quaero's performance
on several examples, including both standard model and
resonant WW , ZZ, and t�t production, has been demon-
strated. The limits obtained are comparable to those
from previous searches at hadron colliders, and the search
forW 0 !WZ is the �rst of its kind. This tool should in-
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Background density Signal density Selected region
(a) (b) (c)

FIG. 1. The background density (a), signal density (b),
and selected region (shaded) (c) determined by quaero for
the standard model processes discussed in the text. From
top to bottom the signals are: WW ! e� =ET , ZZ ! ee 2j,
t�t! e =ET 4j, and t�t! e� =ET 2j. The dots in the plots in the
rightmost column represent events observed in the data.

crease the facility with which new models may be tested
in the future.
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Background density Signal density Selected region
(a) (b) (c)

FIG. 2. quaero's analysis of signatures involving undis-
covered particles. From top to bottom the hypothetical sig-
nals are: h200 ! ZZ ! ee 2j, Z0

550 ! t�t ! e =ET 4j,
Wh115 ! e =ET 2j, and LQ225LQ225 ! ee 2j. Plots (c) of the
�rst two rows show the discriminant D (curve), the threshold
Dcut (horizontal line), and the data (histogram); the region
with D > Dcut is selected.

� Visitor from University of Zurich, Zurich, Switzerland.
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